Abstract

The angular resolution of long-exposure optical images taken with large telescopes at the best sites is limited by atmospheric phase fluctuations to ∼0.5–1 arc s; that is, ∼10–50 times worse than the theoretical diffraction limit. In contrast, the measurement of visibilities and closure phases of fringe patterns in short-exposure images, taken through an aperture mask comprising a non-redundant array of three or more holes, offers the prospect of reliable diffraction-limited imaging using methods well established in very long baseline interferometry (VLBI) at radio wavelengths. Here we report successful first measurements of fringe visibility and closure phase by this technique, together with evidence that the method is applicable to objects as faint as magnitude 15.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.