Abstract
The entanglement dynamics of three-qubit states under a general XY spin-chain environment which can exhibit a quantum phase transition is investigated by using negativity as entanglement measure. Our results imply that the entanglement evolution depends not only on the states of concern but also on the system-environment coupling, the anisotropy parameter, the size of the environment, and the strength of the external field applied to the environment. For the cases under study, we find that the entanglement decay is enhanced by quantum phase transition under weak coupling. The conditions to identify quantum decoherence-free subspaces have been discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have