Abstract

In this article, we investigate the problem of entanglement characterization by polarization measurements combined with maximum likelihood estimation (MLE). A realistic scenario is considered with measurement results distorted by random experimental errors. In particular, by imposing unitary rotations acting on the measurement operators, we can test the performance of the tomographic technique versus the amount of noise. Then, dark counts are introduced to explore the efficiency of the framework in a multi-dimensional noise scenario. The concurrence is used as a figure of merit to quantify how well entanglement is preserved through noisy measurements. Quantum fidelity is computed to quantify the accuracy of state reconstruction. The results of numerical simulations are depicted on graphs and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.