Abstract

The entanglement properties of phase transition in a two-dimensional harmonic lattice, similar to the one observed in recent ion trap experiments, are discussed for both finite number of particles and thermodynamical limit. We show that for the ground state at the critical value of the trapping potential, two entanglement measures, the negativity between two neighbouring sites and the block entropy for blocks of size 1, 2 and 3, change abruptly. Entanglement thus indicates quantum phase transitions in general, not only in the finite-dimensional case considered in Wu et al (2004 Phys. Rev. Lett.93250404). Finally, we consider the thermal state and compare its exact entanglement with a temperature entanglement witness introduced in Anders (2008 Phys. Rev. A 77 062102).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.