Abstract

The entanglement-assisted (EA) formalism allows arbitrary classical linear codes to transform into entanglement-assisted quantum error correcting codes (EAQECCs) by using pre-shared entanglement between the sender and the receiver. In this work, we propose a decomposition of the defining set of constacyclic codes. Using this method, we construct four classes of q-ary entanglement-assisted quantum MDS (EAQMDS) codes based on classical constacyclic MDS codes by exploiting less pre-shared maximally entangled states. We show that a class of q-ary EAQMDS have minimum distance upper bound greater than 3q−1. Some of them have much larger minimum distance than the known quantum MDS (QMDS) codes of the same length. Most of these q-ary EAQMDS codes are new in the sense that their parameters are not covered by the codes available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.