Abstract

The correlations, entanglement entropy, and fidelity susceptibility are calculated for a one-dimensional spin-1/2 XXZ chain with anisotropic power-law long range interactions by employing the density matrix renormalization group method. In particular, this long-range interaction is assigned to ferromagnetic for transversal components, while it can be either ferro- or antiferromagnetic for the longitudinal spin component. Two ground-state phase diagrams are established versus the anisotropy of the interactions which not only changes the phase boundaries of the counterparts with short-range interactions, but also leads to the emergence of exotic phases. We found that the long-range interactions of the z-component results in a Wigner crystal phase, whereas the transversal one may break a continuous symmetry, resulting in a continuous symmetry breaking phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.