Abstract

A semiconductor based scheme has been proposed for generating entangled photon pairs from the radiative decay of an electrically-pumped biexciton in a quantum dot. Symmetric dots produce polarisation entanglement, but experimentally-realised asymmetric dots produce photons entangled in both polarisation and frequency. In this work, we investigate the possibility of erasing the `which-path' information contained in the frequencies of the photons produced by asymmetric quantum dots to recover polarisation-entangled photons. We consider a biexciton with non-degenerate intermediate excitonic states in a leaky optical cavity with pairs of degenerate cavity modes close to the non-degenerate exciton transition frequencies. An open quantum system approach is used to compute the polarisation entanglement of the two-photon state after it escapes from the cavity, measured by the visibility of two-photon interference fringes. We explicitly relate the two-photon visibility to the degree of Bell-inequality violation, deriving a threshold at which Bell-inequality violations will be observed. Our results show that an ideal cavity will produce maximally polarisation-entangled photon pairs, and even a non-ideal cavity will produce partially entangled photon pairs capable of violating a Bell-inequality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.