Abstract
In developing solid-state nanopore sensors for single molecule detection, comprehensive evaluation of the nanopore quality is important. Existing studies typically rely on comparing the noise root mean square or power spectrum density values. Nanopores exhibiting lower noise values are generally considered superior. This evaluation is valid when the single molecule signal remains consistent. However, the signal can vary, as it is strongly related to the solid-state nanopore size, which is hard to control during fabrication consistently. This work emphasized the need to report the baseline current for evaluating solid-state nanopore sensors. The baseline current offers insight into several experimental conditions, particularly the nanopore size. Our experiments show that a nanopore sensor with more noise is not necessarily worse when considering the signal-to-noise ratio (SNR), particularly when the pore size is smaller. Our findings suggest that relying only on noise comparisons can lead to inaccurate evaluations of solid-state nanopore sensors, considering the inherent variability in fabrication and testing setups among labs and measurements. We propose that future studies should include reporting baseline current and sensing conditions. Additionally, using SNR as a primary evaluation tool for nanopore sensors could provide a more comprehensive understanding of their performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.