Abstract

Ensemble learning algorithms train multiple component learners and then combine their predictions. In order to generate a strong ensemble, the component learners should be with high accuracy as well as high diversity. A popularly used scheme in generating accurate but diverse component learners is to perturb the training data with resampling methods, such as the bootstrap sampling used in bagging. However, such a scheme is not very effective on local learners such as nearest-neighbor classifiers because a slight change in training data can hardly result in local learners with big differences. In this paper, a new ensemble algorithm named Filtered Attribute Subspace based Bagging with Injected Randomness (FASBIR) is proposed for building ensembles of local learners, which utilizes multimodal perturbation to help generate accurate but diverse component learners. In detail, FASBIR employs the perturbation on the training data with bootstrap sampling, the perturbation on the input attributes with attribute filtering and attribute subspace selection, and the perturbation on the learning parameters with randomly configured distance metrics. A large empirical study shows that FASBIR is effective in building ensembles of nearest-neighbor classifiers, whose performance is better than that of many other ensemble algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call