Abstract
Resource constrained project scheduling problem is an NP-hard problem that attracts many researchers because of its complexity and daily use. In literature there are a lot of various solving methods for this problem. The priority rules are one of the prominent methods used in practice. Because of their simplicity, speed, and possibility to react to changes in the system, they can be used in a dynamic environment. In this paper, ensembles of priority rules were created to improve the performance of priority rules created with genetic programming. For ensemble creation, four different methods will be considered: simple ensemble combination, BagGP, BoostGP, and cooperative coevolution. The priority rules that are part of the ensemble will be combined with the sum and vote methods in reaching the final decision. Additionally, the ensemble subset search method will be applied to the created ensembles to find the optimal subset of priority rules. The results achieved in this paper show that ensembles of priority rules can achieve significantly better results than those achieved when using only a single priority rule.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have