Abstract

AbstractOscillatory modes of the climate system are among its most predictable features, especially at intraseasonal time scales. These oscillations can be predicted well with data-driven methods, often with better skill than dynamical models. However, since the oscillations only represent a portion of the total variance, a method for beneficially combining oscillation forecasts with dynamical forecasts of the full system was not previously known. We introduce Ensemble Oscillation Correction (EnOC), a general method to correct oscillatory modes in ensemble forecasts from dynamical models. We compute the ensemble mean—or the ensemble probability distribution—with only the best ensemble members, as determined by their discrepancy from a data-driven forecast of the oscillatory modes. We also present an alternate method which uses ensemble data assimilation to combine the oscillation forecasts with an ensemble of dynamical forecasts of the system (EnOCDA). The oscillatory modes are extracted with a time-series analysis method called multi-channel singular spectrum analysis (M-SSA), and forecast using an analog method. We test these two methods using chaotic toy models with significant oscillatory components, and show that they robustly reduce error compared to the uncorrected ensemble. We discuss the applications of this method to improve prediction of monsoons as well as other parts of the climate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.