Abstract

Offshore wind energy is drawing increased attention for the decarbonization of electricity generation. Due to the unpredictable and complex nature of offshore aero-hydro dynamics, the Wind Turbine Power Curve (WTPC) model is an important tool for power forecasting and, hence, providing a reliable, predictable, and stable power supply. With the development of data-driven approaches, the Artificial Neural Network (ANN) has become a popular method for estimating WTPCs. This paper integrates the Isolation Forest (iForest), Nonsymmetric Fuzzy Means (NSFM) Radial Basis Neural Network (RBFNN), and metaheuristic algorithm to form a novel WTPC model. iForest performed anomaly detection and removal, NSFM RBFNN approximated the WTPC, and the metaheuristic solved NSFM optimization without training RBFNN. Four real-world datasets were used to assess the performance of NSFM RBFNN. According to multiple evaluation metrics and the Diebold-Mariano test, the accuracy of NSFM RBFNN was significantly better than the other competitive neural network-based methods. Additionally, NSFM RBFNN was shown to be more robust to anomalies than competitors, which is highly beneficial for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.