Abstract
We propose an ensemble of deep neural networks for the two tasks of automated prognosis of post-treatment ischemic stroke, as imposed by the ISLES 2016 Challenge. For lesion outcome prediction, we employ an ensemble of three-dimensional multiscale residual U-Net and a fully convolutional network, trained using image patches. In order to handle class imbalance, we devise a multi-step training strategy. For clinical outcome prediction, we combine a convolutional neural network (CNN) and a logistic regression model. To overcome the small sample size and the need for whole brain image, we use the CNN trained using patches as a feature extractor and trained a shallow network based on the extracted features. Our ensemble approach demonstrated an appealing performance on both problems, and is ranked among the top entries in the Challenge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.