Abstract
An ensemble multivariate calibration algorithm, termed as MISEPLS, is proposed. In MISEPLS, when constructing a member model, the variables that have mutual information (MI) with the response less than a threshold are eliminated; thus, the modeling can be performed in a subset of original variables and some problems arising from multi-collinearity can be avoided. Through experiments on three near-infrared (NIR) spectroscopic datasets from the food industry, MISEPLS proves to be superior to the single-model full-spectrum PLS and MIPLS (PLS combined with MI-induced variable selection). MISEPLS can improve the accuracy and robustness of a calibration model, without increasing its complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.