Abstract

More than four million people worldwide suffer from hearing loss. Recently, new CNNs and deep ensemble-learning technologies have brought promising opportunities to the image-recognition field, so many studies aiming to recognize American Sign Language (ASL) have been conducted to help these people express their thoughts. This paper proposes an ASL Recognition System using Multiple deep CNNs and accuracy-based weighted voting (ARS-MA) composed of three parts: data preprocessing, feature extraction, and classification. Ensemble learning using multiple deep CNNs based on LeNet, AlexNet, VGGNet, GoogleNet, and ResNet were set up for the feature extraction and their results were used to create three new datasets for classification. The proposed accuracy-based weighted voting (AWV) algorithm and four existing machine algorithms were compared for the classification. Two parameters, α and λ, are introduced to increase the accuracy and reduce the testing time in AWV. The experimental results show that the proposed ARS-MA achieved 98.83% and 98.79% accuracy on the ASL Alphabet and ASLA datasets, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.