Abstract
BackgroundSign language is an essential means of communication for hearing-impaired individuals. ObjectiveWe aimed to develop an American sign language recognition dataset and use it in the deep learning model which depends on neural networks to interpret gestures of sign language and hand poses to natural language. MethodsIn this study, we developed a dataset and a Convolutional Neural Network-based sign language interface system to interpret gestures of sign language and hand poses to natural language. The neural network developed in this study is a Convolutional Neural Network (CNN) which enhances the predictability of the American Sign Language alphabet (ASLA). This research establishes a new dataset of the American Sign Language alphabet which takes into consideration various conditions such as lighting and distance. ResultsThe dataset created in this study is a new addition in the field of sign language recognition (SLR). This dataset may be used to develop SLR systems. Furthermore, our research compares the results of our dataset with two different datasets from other studies. The other datasets have invariant scene conditions, but our suggested CNN model demonstrated high accuracy for all the tested datasets. Despite the different conditions and volume of the new dataset, it achieved 99.38% accuracy with excellent prediction and small loss (0.0250). ConclusionsThe proposed system may be considered a promising solution in medical applications that use deep learning with superior accuracy. Moreover, our dataset was created under variable conditions which increases the number of contributions, comparisons, results and conclusions in the field of SLR and may enhance such systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods and Programs in Biomedicine Update
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.