Abstract

Empirical studies of possible compound corrosion inhibitors require a lot of money, time, and resources. Therefore, we used a machine learning (ML) paradigm based on quantitative structure-property relationship (QSPR) models to evaluate ensemble algorithms as predictors of corrosion inhibition efficiency (CIE) values. Our investigation reveals that the gradient boosting (GB) regressor model outperforms other ensemble-based models. This advantage is evaluated objectively using the metrics root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). In summary, our research provides a new perspective on how well machine learning algorithms in particular ensembles work to identify organic molecules such as pyridazine that have the potential to prevent corrosion on the surfaces of metals such as iron and its alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call