Abstract
Alzheimer's disease (AD) is a progressive brain disorder. Machine learning models have been proposed for the diagnosis of AD at early stage. Recently, deep learning architectures have received quite a lot attention. Most of the deep learning architectures suffer from the issues of local minima, slow convergence and sensitivity to learning rate. To overcome these issues, non-iterative learning based deep randomized models especially random vector functional link network (RVFL) with direct links have proven to be successful. However, deep RVFL and its ensemble models are trained only on normal samples. In this paper, deep RVFL and its ensembles are enabled to incorporate privileged information, as the standard RVFL model and its deep models are unable to use privileged information. To fill this gap, we have incorporated learning using privileged information (LUPI) in deep RVFL model, and propose deep RVFL with LUPI framework (dRVFL+). Privileged information is available while training the models. As RVFL is an unstable classifier, we propose ensemble deep RVFL+ with LUPI framework (edRVFL+) which exploits the LUPI as well as the diversity among the base leaners for better classification. Unlike traditional ensemble approach wherein multiple base learners are trained, the proposed edRVFL+ model optimises a single network and generates an ensemble via optimization at different levels of random projections of the data. Both dRVFL+ and edRVFL+ efficiently utilise the privileged information which results in better generalization performance. In LUPI framework, half of the available features are used as normal features and rest as the privileged features. However, we propose a novel approach for generating the privileged information. We utilise different activation functions while processing the normal and privileged information in the proposed deep architectures. To the best of our knowledge, this is first time that a separate privileged information is generated. The proposed dRVFL+ and edRVFL+ models are employed for the diagnosis of Alzheimer's disease. Experimental results demonstrate the superiority of the proposed dRVFL+ and edRVFL+ models over baseline models. Thus, the proposed edRVFL+ model can be utilised in clinical setting for the diagnosis of AD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have