Abstract
Ensemble methods use multiple models to get better performance. Ensemble methods have been used in multiple research fields such as computational intelligence, statistics and machine learning. This paper reviews traditional as well as state-of-the-art ensemble methods and thus can serve as an extensive summary for practitioners and beginners. The ensemble methods are categorized into conventional ensemble methods such as bagging, boosting and random forest, decomposition methods, negative correlation learning methods, multi-objective optimization based ensemble methods, fuzzy ensemble methods, multiple kernel learning ensemble methods and deep learning based ensemble methods. Variations, improvements and typical applications are discussed. Finally this paper gives some recommendations for future research directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.