Abstract

Decision tree-based classifier ensemble methods are a machine learning (ML) technique that combines several tree models to produce an effective or optimum predictive model, and that allows well-predictive performance especially compared to a single model. Thus, selecting a proper ML algorithm help us to understand possible future occurrences by analyzing the past more accurate. The main purpose of this study is to produce landslide susceptibility map of the Ayancik district of Sinop province, situated in the Black Sea region of Turkey using three featured regression tree-based ensemble methods including gradient boosting machines (GBM), extreme gradient boosting (XGBoost), and random forest (RF). Fifteen landslide causative factors and 105 landslide locations occurred in the region were used. The landslide inventory map was randomly divided into training (70%) and testing (30%) dataset to construct the RF, XGBoost and GBM prediction models. Symmetrical uncertainty measure was utilized to determine the most important causative factors, and then the selected features were used to construct susceptibility prediction models. The performance of the ensemble models was validated using different accuracy metrics including Area under the curve (AUC), overall accuracy (OA), Root mean square error (RMSE), and Kappa coefficient. Also, the Wilcoxon signed-rank test was used to assess differences between optimum models. The accuracy results showed that the model of XgBoost_Opt model (the model created by optimum factor combination) has the highest prediction capability (OA = 0.8501 and AUC = 0.8976), followed by the RF_opt (OA = 0.8336 and AUC = 0.8860) and GBM_Opt (OA = 0.8244 and AUC = 0.8796). When the Wilcoxon sign-rank test results were analyzed, XgBoost_Opt model, which is the best subset combinations, were confirmed to be statistically significant considering other models. The results showed that, the XGBoost method according to optimum model achieved lower prediction error and higher accuracy results than the other ensemble methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.