Abstract

Treatment of ventilation air methane (VAM) with cost-effective technologies has been an ongoing challenge due to its high volumetric flow rate with low and variable methane concentrations. In this work, honeycomb monolithic carbon fiber composites were developed and employed to capture VAM with a large-scale test unit at various conditions such as VAM concentration, ventilation air (VA) flow rate, temperature, and purging fluids. Regardless of inlet VAM concentrations, methane was captured at almost 100%. To regenerate the composites, the initial vacuum swing followed by combined temperature and vacuum swing adsorption (TVSA) was applied. It was found that initial vacuum swing is a control step for the final methane concentration having 5 or 11 times the VAM enrichment by one-step adsorption, which is, to our knowledge, the best performance achieved in VAM enrichment technologies worldwide. Five-time enriched VAM can be utilized as a principle fuel for lean burn turbine. Also, it can be further enriched by second step adsorption to more than 25% which then can be used for commercially available gas engines. In this way, the final product can be out of the methane explosive range (5-15%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call