Abstract

Neuroblastoma is characterized by a relative paucity of recurrent somatic mutations at diagnosis. However, recent studies have shown that the mutational burden increases at relapse, likely as a result of clonal evolution of mutation-carrying cells during primary treatment. To inform the development of personalized therapies, we sought to further define the frequency of potentially actionable mutations in neuroblastoma, both at diagnosis and after chemotherapy. We performed a retrospective study to determine mutation frequency, the only inclusion criterion being availability of cancer gene panel sequencing data from Foundation Medicine. We analyzed 151 neuroblastoma tumor samples: 44 obtained at diagnosis, 42 at second look surgery or biopsy for stable disease after chemotherapy, and 59 at relapse (6 were obtained at unknown time points). Nine patients had multiple tumor biopsies. ALK was the most commonly mutated gene in this cohort, and we observed a higher frequency of suspected oncogenic ALK mutations in relapsed disease than at diagnosis. Patients with relapsed disease had, on average, a greater number of mutations reported to be recurrent in cancer, and a greater number of mutations in genes that are potentially targetable with available therapeutics. We also observed an enrichment of reported recurrent RAS/MAPK pathway mutations in tumors obtained after chemotherapy. Our data support recent evidence suggesting that neuroblastomas undergo substantial mutational evolution during therapy, and that relapsed disease is more likely to be driven by a targetable oncogenic pathway, highlighting that it is critical to base treatment decisions on the molecular profile of the tumor at the time of treatment. However, it will be necessary to conduct prospective clinical trials that match sequencing results to targeted therapeutic intervention to determine if cancer genomic profiling improves patient outcomes.

Highlights

  • Neuroblastoma is a cancer typically affecting young children arising from the developing sympathetic nervous system, but can occasionally occur in adolescents and adults [1]

  • We analyzed cancer gene panel sequencing data from 151 neuroblastomas acquired at various time points during therapy to further define how the genomic landscape of neuroblastoma evolves

  • Our data support the concept that therapeutic decisions targeting specific oncogenic mutations should be based on sequencing data obtained as close to the intervention as possible, and not be reliant on archived diagnostic material

Read more

Summary

Introduction

Neuroblastoma is a cancer typically affecting young children arising from the developing sympathetic nervous system, but can occasionally occur in adolescents and adults [1]. Recent generation sequencing (NGS) efforts of matched neuroblastoma samples collected at diagnosis and constitutional DNAs in 373 unique subjects across four studies has clearly documented a relatively low somatic mutation rate in the protein coding portion of the genome [4,5,6,7], challenging the concept of targeting oncogenic drivers with newly developed therapeutics. Recent studies of diagnostic-relapse-normal DNA “trios” from a limited number of neuroblastoma cases has shown that the mutation rate is much higher after exposure to genotoxic chemoradiotherapy, and that there may be an enrichment of previously subclonal mutations in pathways known to be therapeutically targetable in other diseases [9,10,11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call