Abstract

We here present an efficient approach for the tandem extraction of psychotropic drugs using biodegradable materials. In this regard, gel electromembrane extraction (G-EME) was combined with the emulsification-based microextraction (ME) technique by rhamnolipid bioaggregates as a green extraction approach. The tandem extraction technique consists of two stages: (i) extraction of psychotropic drugs from human urine samples to the acceptor phase situated on the other side of the agarose gel membrane, and (ii) transfer of analytes from the acceptor phase into a colloidal phase of rhamnolipid biosurfactants. The colloidal phase was formed by adding rhamnolipid biosurfactants to the extracted phase of the first step. The colloidal phase was finally injected into a liquid chromatographic system for quantitative analysis. G-EME mechanism is based on electrokinetic migration of charged species toward oppositely charged electrode located in the acceptor solution under the influence of the electric field. After extraction, the analytes were trapped in an emulsion phase floating on the surface of the solution and at the end were injected into the liquid chromatographic system. The method provided good linearity in the ranges of 5-100 and 10-100 μg. L−1 for methamphetamine and amphetamine, respectively with (r2 > 0.992). Also, the detection limits (LODs) were 1 and 5 μg. L−1 for methamphetamine and amphetamine, respectively. The mean extraction recoveries by G-EME-ME for real samples at three spiked concentrations were in the range 95.9-101.1% and complete analytical workflow within only 18 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call