Abstract

Two modes of electromembrane extraction (EME) were evaluated in this work, one using deep eutectic solvents (DESs) as liquid membrane, and another was gel electromembrane extraction (G-EME) based on solid agarose membrane. Both EME modes have eliminated organic solvents and are recognized as green strategies. Unlike classic EME in which polypropylene membrane and organic extracting solvents play an essential role in the extraction process, new modes of EME are based on biodegradable membranes and aqueous extracting solutions. Approaches of EME based on the new designs follow the green chemistry principles. Each mode of EME was evaluated for the determination of polar and non-polar bases drugs from human urine samples using high-performance liquid chromatography (HPLC) equipped with a diode array detector (DAD). EME using DES A was suitable for determining polar and non-polar bases drugs in a large polarity window. While extraction recoveries for all six drugs studied by G-EME were lower than EME using DES A. Comparing the two EME modes shows similar results in the analytical figures of merit. However, differences in extraction recoveries of the drugs by two EME modes were observed which is related to the difference in membranes structure. Our findings indicate that the differences between membranes properties used in two EME modes, including the permeability, hydrophilicity, hydrophobicity, and variety of interactions, are influencer factors on extraction efficiency. The two EME modes provided good linearity in the ranges of 16–100 and 19–100 μg. L−1 for G-EME and EME using DES A, respectively with (r2 > 0.993). Also, the detection limits (LODs) were 19–32 and 19–29 μg. L−1 for G-EME and EME using DES A, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call