Abstract

We develop a more general view of Stembridge's enriched P-partitions and use this theory to outline the structure of peak algebras for the symmetric group and the hyperoctahedral group. Initially we focus on commutative peak algebras, spanned by sums of permutations with the same number of peaks, where we consider several variations on the definition of “peak.” Whereas Stembridge's enriched P-partitions are related to quasisymmetric functions (the dual coalgebra of Solomon's type A descent algebra), our generalized enriched P-partitions are related to type B quasisymmetric functions (the dual coalgebra of Solomon's type B descent algebra). Using these functions, we move on to explore (non-commutative) peak algebras spanned by sums of permutations with the same set of peaks. While some of these algebras have been studied before, our approach gives explicit structure constants with a combinatorial description.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.