Abstract

Louis Solomon showed that the group algebra of the symmetric group $$\mathfrak{S}_{n}$$ n has a subalgebra called the descent algebra, generated by sums of permutations with a given descent set. In fact, he showed that every Coxeter group has something that can be called a descent algebra. There is also a commutative, semisimple subalgebra of Solomon's descent algebra generated by sums of permutations with the same number of descents: an descent algebra. For any Coxeter group that is also a Weyl group, Paola Cellini proved the existence of a different Eulerian subalgebra based on a modified definition of descent. We derive the existence of Cellini's subalgebra for the case of the symmetric group and of the hyperoctahedral group using a variation on Richard Stanley's theory of P-partitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.