Abstract

In this paper, we report on -3.5±0.2 dB vacuum squeezing (corresponding to -4.2±0.2 dB with loss correction) at 795 nm via the polarization self-rotation (PSR) effect in rubidium vapor by applying a magnetic field, whose direction is perpendicular to the propagation and polarization of the pump light. Compared with the case without the magnetic field, whose optimal squeezing degree is about -1.5 dB, this weak magnetic field can enhance the PSR effect and ultimately increase the squeezing degree. This compact squeezed light source can be potentially utilized in quantum protocols in which atomic ensembles are involved, such as in quantum memory, atomic magnetometers and quantum interferometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call