Abstract
Personalized news recommendation systems have emerged as essential tools in addressing information overload by tailoring news content to individual user preferences. This paper provides a comprehensive overview of the advanced techniques employed in these systems, their impacts on user engagement, and the ethical considerations surrounding their development and implementation. We delve into the intricacies of data collection, processing, and user profiling, highlighting the methodologies and challenges inherent in each stage. Additionally, we explore advanced algorithmic foundations, including collaborative filtering, content-based filtering, and hybrid methods, elucidating their strengths and limitations. Furthermore, we examine the dynamics of user engagement within personalized news recommendation systems, analyzing key metrics and the role of user feedback in refining recommendation algorithms. Finally, we address privacy concerns, data sparsity issues, and biases, proposing solutions to mitigate ethical challenges and uphold user trust and fairness. This paper serves as a comprehensive guide for researchers, practitioners, and policymakers navigating the complexities of personalized news recommendation systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have