Abstract

During the post-disaster recovery process of the urban system (US), it is critical to understand the interdependencies of critical infrastructure systems (CISs) and strategically allocate resources among them. However, due to the complexity of the problem and the limitations of the perspective, the existing research usually ignores the implicit impact of interdependence and resource allocation on urban resilience. To bridge this gap, this study establishes a multilayer network-based methodological framework to characterize various types of interdependencies between different CISs and integrate the US as a complex “system of systems”. Then, the system functionality of the US under different resource allocation strategies is quantified and optimized by resilience metrics. This proposed framework was demonstrated in a virtual US including a transportation subsystem (TS), an electric power supply subsystem (EPSS), and a community subsystem (CS) under catastrophic earthquakes. The sensitivity of urban resilience to interdependencies is investigated, and the corresponding results reveal that urban resilience is most sensitive to the interdependence between TS and EPSS. In particular, when there exists strong interdependence between the TS and EPSS, the optimal resource allocation strategy to maximize urban resilience is assigning resource allocation coefficients of 0.1, 0.8, and 0.1 for the TS, EPSS, and CS, respectively. These results can be effectively applied in future planning and investment in urban resilience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call