Abstract
Photonic applications of up-conversion luminescence (UCL) suffer from poor external quantum yield owing to a low absorption cross-section of UCL nanoparticles (UCNPs) doped with lanthanide ions. In this regard, plasmonic nanostructures have been proposed for enhancing UCL intensity through strong electromagnetic local-field enhancement; however, their intrinsic ohmic loss opens additional nonradiative decay channels. Herein, we demonstrate that dielectric metasurfaces can overcome this disadvantage. A periodic array of amorphous-silicon nanodisks serves as a metasurface on which a layer of UCNPs is self-assembled. Sharp resonances supported by the metasurface overlap the absorption wavelength (λ = 980 nm) of UCNPs to excite them, resulting in the enhancement of UCL intensity. We further sharpen the resonances through rapid thermal annealing (RTA) of the metasurface, crystallizing silicon to reduce intrinsic optical losses. By optimizing the RTA condition (at 1000 °C for 20 min in N2/H2 (3 vol %) atmosphere), the resonance quality factor improves from 17.2 to 32.9, accompanied by an increase in the enhancement factor of the UCL intensity from 86- to over 600-fold. Moreover, a reduction in the intrinsic optical losses mitigates the UCL thermal quenching under a high excitation density. These findings provide a strategy for increasing light-matter interactions in nanophotonic composite systems and promote UCNP applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.