Abstract

AbstractIt is of great importance to reinforce electronic and ionic conductivity of Li4Ti5O12 electrodes to achieve fast reaction kinetics and good high‐power capability. Herein, for the first time, a dual strategy of combing N‐doped Li4Ti5O12 (N‐LTO) with highly conductive TiC/C skeleton to realize enhanced ultrafast Li ion storage is reported. Interlinked hydrothermal‐synthesized N‐LTO nanosheets are homogeneously decorated on the chemical vapor deposition (CVD) derived TiC/C nanowires forming binder‐free N‐LTO@TiC/C core–branch arrays. Positive advantages including large surface area, strong mechanical stability, and enhanced electronic/ionic conductivity are obtained in the designed integrated arrays and rooted upon synergistic TiC/C matrix and N doping. The above appealing features can effectively boost kinetic properties throughout the N‐LTO@TiC/C electrodes to realize outstanding high‐rate capability at different working temperatures (143 mAh g−1/10 C at 25 °C and 122 mAh g−1/50 C at 50 °C) and notable cycling stability with a capacity retention of 99.3% after 10 000 cycles at 10 C. Moreover, superior high‐rate cycling life is also demonstrated for the full cells with N‐LTO@TiC/C anode and LiFePO4 cathode. The dual strategy may provoke wide interests in fast energy storage areas and motivate the further performance improvement of power‐type lithium ion batteries (LIBs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.