Abstract
The South China Sea (SCS), located at the intersection of two major tectonic plates and near the Manila Fault Zone, is a region highly susceptible to earthquakes and tsunami activities. To develop a more comprehensive and reliable understanding of tsunami behaviours over coral reefs, this study employs the actual topography of a coral reef in the SCS and N-wave theory for the numerical simulation, encompassing the entire tsunami life cycle. Utilizing the open-source solver OlaFlow, driven by the Reynolds-averaged Navier-Stokes (RANS) equations, this study performs a series of numerical simulations of N-wave tsunamis considering the measured topography of the coral reef, as well as the real dimension of an engineering defence structure on the top of the coral reef. The adopted tsunami parameters are equivalent to an earthquake with a moment magnitude of 7.1. The simulations focus on the impact of wave profiles and initial static water levels on the propagation and evolution of tsunamis. Numerical simulations reveal that tsunami profiles, water depth, and topography significantly influence the tsunami dynamics, notably in the waveform transformation, the relationship between wave height and trough-to-peak ratio, and the topographic effects on the wave energy dissipation. These results highlight the critical need to incorporate factors such as tsunami profiles, dispersion, and realistic topography into tsunami predictive models for the purpose of more reliable hazard evaluation and the development of effective coastal defences.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.