Abstract

Abstract Whispering gallery mode (WGM) resonators, as an integral component of integrated photonics, have attracted considerable attention due to their high Q factor, small footprint, and small mode volume, making them widely applied as microlasers. In this work, Nd:GGG crystal was prepared into a Nd:GGG film with thickness of 1.8 μm through ion implantation-enhanced etching (IIEE) technique, and subsequently, the Nd:GGG film was partened by focused ion beam (FIB) technology to generate a microdisk with diameter of 20 μm. For high-power microcavity lasers, heat generation during laser operation was inevitable. We placed the microdisk on a silica holder and a silica wafer, respectively. The microdisk placed on the silica holder and silica wafer exhibited laser thresholds of 32 μW and 17 μW, respectively. Moreover, due to different heat dissipation conditions, the microdisk placed on the silica holder exhibited a mode shift of 0.13 nm/mW, while the microdisk placed on the silica wafer showed a more stable laser output state with a mode shift of 0.02626 nm/mW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call