Abstract

The recently proposed single-image parasite quantification (SIMPAQ) platform based on a Lab-on-a-Disc (LOD) device was previously successfully tested in field conditions, demonstrating its efficiency in soil-transmitted helminth (STH) egg detection and analysis on the level delivered by the current state-of-the-art methods. Furthermore, the SIMPAQ provides relatively quick diagnostics and requires small amounts of sample and materials. On the other hand, in a recent related study, it was revealed that the performance of the SIMPAQ method can be limited due to the action of the tangential Euler and Coriolis forces, and the interaction of the moving eggs with the walls of the LOD chamber. Here, we propose a new improved design that allows us to overcome these limitations and enhance the yield of the SIMPAQ LOD device, as demonstrated in experiments with a synthetic particle model system and real parasite eggs. Despite the simplicity, the proposed design modification is demonstrated to allow a substantial improvement in the yield of the SIMPAQ device, i.e., above 90% of parasite eggs and 98% of synthetic model particles were transported to the field of view. The new design proposed here will be further examined in the new generation of SIMPAQ devices within ongoing research on STH egg detection in field conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.