Abstract

With the development of mobile communication, digital signatures with low latency, low area, and high security are in increasing demand. Elliptic curve cryptography (ECC) is widely used because of its security and lightweight. Elliptic curve scalar multiplication (ECSM) is the basic arithmetic in ECC. Based on this background information, we propose our own research objectives. In this paper, a low-latency and low-area ECSM architecture based on the comb algorithm is proposed. The detailed methodology is as follows. The recoding-k algorithm and randomization-Z algorithm are used to improve security, which can resist sample power analysis (SPA) and differential power analysis (DPA). A low-area multi-functional architecture for comb is proposed, which takes into account different stages of the comb algorithm. Based on this, the data dependency is considered and the comb architecture is optimized to achieve a uniform and efficient execution pattern. The interleaved modular multiplication algorithm and modified binary inverse algorithm are used to achieve short clock cycle delay and high frequency while taking into account the need for a low area. The proposed architecture has been implemented on Xilinx Virtex-7 series FPGA to perform ECSM on 256-bits prime field GF(p). In the hardware architecture with only 7351 slices of resource usage, a single ECSM only takes 0.74 ms, resulting in an area-time product (ATP) of 5.41. The implementation results show that our design can compete with the existing state-of-the-art engineering in terms of performance and has higher security. Our design is suitable for computing scenarios where security and computing speed are required. The implementation of the overall architecture is of great significance and inspiration to the research community.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.