Abstract

The desire for faster data speeds and increased Energy Efficiency has prompted the development of femtocells, which are short-range, low-cost, customer cellular access points. However, in a situation of Distributed Denial of Service (DDoS) which is caused by inefficient energy, distributed attack sources could be employed to amplify the assault and increase the attack's impact. By flooding the network with packets and creating malicious traffic, Distributed Denial of Service (DDoS) attacks try to deplete the network's communication and processing capability. A DDoS assault must be identified and neutralized quickly before a valid user can reach the attacker's target for 5G network to have an effective Energy Efficient service. For the next Fifth Generation (5G) Wireless Network, there is a pressing need to build an effective Energy Efficient mobile network solution. Despite their evident promise in assisting the development and deployment of the complicated 5G environment. The physical product, the digital product, and the relationship between both the physical and virtual goods are said to make up Digital Twin (DT). On the other hand, DT allows real-time communication with both the physical twins. The synergy of energy efficiency and security improvements in this research contributes to a more holistic optimization of 5G networks. This approach seeks to minimize energy consumption while fortifying the network against evolving security threats. Integrating energy-efficient practices with robust security measures enhances the overall resilience and sustainability of 5G systems. This is crucial for ensuring continuous, reliable, and secure communication in the face of dynamic challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.