Abstract

Our general purpose is to support the use of known-biomass production models (KBPMs), illustrating their usefulness by addressing the evolution of surplus production (SP) over time and the factors affecting it (e.g. environment). We also demonstrate the utility of KBPMs for multispecies management objectives or for estimating maximum sustainable yield reference points without a stock recruitment function, among other worthwhile applications. To do so, we present different uses of KBPMs, illustrating their application on demersal species in the International Council for the Exploration of the Sea (ICES) area, specifically for megrim, white anglerfish and European hake stocks. The proposed analytical approach involved fitting single-species and multispecies KBPMs, conducting retrospective analyses and assessing the effects of environmental variability on SP. The findings show that, in general, stock SP increased after a decline in biomass and SP, except for white anglerfish in the southern area. Megrim stocks are the least productive, while hake and northern anglerfish are the most productive. Retrospective analysis revealed SP shifts in northern hake stock for reasons other than biomass variability. Hence, the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation (AMO), two key climate variability modes in the North Atlantic, were tested for their links to SP, revealing a positive connection between SP and AMO, although further research is necessary. Beyond the specific results of our particular KBPM application, our main conclusion is that KBPMs can serve as a tool complementary to more complex assessment models for resolving unaddressed issues and crosschecking available assessment results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call