Abstract

Ultra-high performance concrete (UHPC) features high strength but a relatively low tensile strain capacity. Matrix, fiber parameters and their interaction are the controlling factors, which need careful designation to enhance the tensile performance of UHPC. In this research, different fiber parameters, e.g., fiber shapes, fiber aspect ratios, fiber hybridization and crumb rubber are utilized to tailor fiber parameters and matrix toughness to improve the tensile properties of UHPC. Systematic investigations were carried out to obtain the uniaxial tensile, compressive, fracture toughness and single-crack tension properties of UHPC. Results show that the tensile properties of UHPC could be largely improved by adjusting the fiber parameters and matrix toughness, in which the incorporation of crumb rubber demonstrates the most predominant effect in enhancing both tensile strength and strain capacity. The tensile strain capacity and crack number of developed UHPC reach 5585 με and 18, respectively, which are almost twice as the values of referred UHPC. The fracture toughness of developed UHPC ranges from 4.01 to 6.17 MPa·m1/2, approaching that of metals and alloys. The methods used in this work provide potential methods for more efficient improvement of the tensile performance of UHPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.