Abstract

Amorphous alloys with pre-fabricated defective structure have been proved to have splendid ductility, making it a prospective second phase for metallic glass (MG) matrix composites. Here, the plastic deformation behavior of amorphous-amorphous (A/A) dual-phase nano-multilayers is successfully simulated by performing molecular dynamics method. The results reveal that the soft phase with structural defects in A/A nano-multilayers plays a key role in improving plasticity of MG. Specifically, when the density of structural defects is small, most of plastic deformation dominated by a single shear band is mainly confined to the flabby soft phase. A suitable density makes the clusters with large atomic shear strain more likely to be activated at the A/A interfaces, thereby linking the shear deformation between the two amorphous phases and promoting a relatively uniform global plasticity. Nevertheless, the free volume gradient caused by excessive density difference between two amorphous phases will create the rapid release of large stress at the A/A interfaces. The results indicate that the introduction of A/A interfaces and soft MG phase is an effective approach for significantly improving the plasticity without damage and expense the strength of MG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.