Abstract

Energy harvesting offers a promising solution for powering a growing variety of low-power electronics; however, harnessing energy from human motion, with its irregular and low-frequency bursts of power, presents conversion challenges. As rectification is a common part of it, this study investigates the influence of smoothing capacitor values on rectifier output for short, intermittent signals. We propose an analytical model that identifies an optimal smoothing capacity for the full-bridge rectifier, considering harvester internal resistance, frequency, and load resistance and leading to the highest average output voltage after rectification. The model was validated with detailed computer simulations; furthermore, a similar effect was revealed on a voltage multiplier circuit as well. Experimental measurements demonstrate that deviating from the optimal smoothing capacity results in up to 10% decrease in rectified RMS voltage, leading to significant drops in output power in specific energy harvesting systems. A real-world experiment with a human motion energy harvester further confirmed the findings in a naturally varying generation environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.