Abstract
Bee pollen is recognized as a superfood due to its high content of nutrients and bioactive compounds. However, its bioavailability is restricted by a degradation-resistant outer layer known as exine. Physical and biotechnological techniques have recently been developed to degrade this layer and improve pollen's nutritional and functional profile. This review examines how processing methods such as fermentation, enzymatic hydrolysis, ultrasound, and drying affect pollen's chemical profile, nutrient content, and bioactive compounds. The review also considers changes in exine structure and possible synergistic effects between these methods. In addition, the challenges associated with the commercialization of processed bee pollen are examined, including issues such as product standardization, stability during storage, and market acceptance. The objective was to provide an understanding of the efficacy of these techniques, their physicochemical conditions, and their effect on the nutritional value of the pollen. The work also analyzes whether pollen transformation is necessary to maximize its benefits and offers conclusions based on the analysis of available methods, helping to determine whether pollen transformation is a valid strategy for inclusion in functional foods and its impact on consumer health. Although the literature reports that pollen transformation influences its final quality, further studies are needed to demonstrate the need for pollen exine modification, which could lead to greater market availability of pollen-based products with functional properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have