Abstract

In this study, we examined the possibility of using industrial microwave processing to enhance the gelling properties and reduce the starch digestibility of mung bean flour (MBF). MBF (12.6 % moisture) was microwaved at a power of 6 W/g to different final temperatures (100–130 °C), and then its structural and functional properties were characterized. The microwave treatment had little impact on the crystalline structure or amylose content of the starch, but it roughened the starch granule surfaces and decreased the short-range ordered structure and degree of branching. In addition, the extent of mung bean protein denaturation caused by the microwave treatment depended on the final temperature. Slightly denaturing the proteins (100 °C) did not affect the nature of the gels (protein phase dispersed in a starch phase) but the gel network became more compact. Moderately denaturing the proteins (110–120 °C) led to more compact and homogeneous starch-protein double network gels. Excessive protein denaturation (130 °C) caused the gel structure to become more heterogeneous. As a result, the facilitated tangles between starch chains by more linear starch molecules after debranching, and the protein network produced by moderate protein denaturation led to the formation of stronger gel and the improvement of plasticity during large deformation (large amplitude oscillatory shear-LAOS). Starch recrystallization, lipid complexion, and protein network retard starch digestion in the MBF gels. In conclusion, an industrial microwave treatment improved the gelling and digestive properties of MBF, and Lissajous curve has good adaptability in characterizing the viscoelasticity of gels under large deformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.