Abstract
Neural network techniques are widely used in network embedding, boosting the result of node classification, link prediction, visualization and other tasks in both aspects of efficiency and quality. All the state of art algorithms put effort on the neighborhood information and try to make full use of it. However, it is hard to recognize core periphery structures simply based on neighborhood. In this paper, we first discuss the influence brought by random-walk based sampling strategies to the embedding results. Theoretical and experimental evidences show that random-walk based sampling strategies fail to fully capture structural equivalence. We present a new method, SNS, that performs network embeddings using structural information (namely graphlets) to enhance its quality. SNS effectively utilizes both neighbor information and local-subgraphs similarity to learn node embeddings. This is the first framework that combines these two aspects as far as we know, positively merging two important areas in graph mining and machine learning. Moreover, we investigate what kinds of local-subgraph features matter the most on the node classification task, which enables us to further improve the embedding quality. Experiments show that our algorithm outperforms other unsupervised and semi-supervised neural network embedding algorithms on several real-world datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.