Abstract

Nowadays, it is becoming increasingly urgent to lower the escalating carbon dioxide (CO2) to reduce greenhouse effect. Fortunately, it is an ideal strategy by using the inexhaustible solar energy as the driving force to manipulate the cycloaddition reaction, the atomic efficiency of which is 100 %. This work represents the first attempt on utilization of rare-earth metal Tb with atomic dispersion, and the structure of Tb coordinated with 4 N-atoms and 2B-atoms was constructed on interconnected carbon hollow spheres. The introduction of electron-deficient B reduces the electron density of Tb, thereby boosting Lewis acidity and promoting the occurrence of ring-opening reaction. The mechanism exploration enunciates that TbN4B2/C is a photothermal synergistic catalyst, the combined action of photogenerated electrons and strong Lewis acidic site of Tb reduces the free energy of the rate-determining step, and then improving the yield of cyclic carbonate up to 739 mmol g-1h−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.