Abstract

Polylactic acid (PLA) nonwovens, recognized as eco-friendly substitutes for petroleum-based synthetic fibers, face a significant challenge due to their inherent flammability. This work addresses this concern by synthesizing a hyperbranched polyphosphoramide flame retardant (TPDT) through a one-step polycondensation process without using solvent and catalyst. TPDT is subsequently applied to PLA nonwovens using a dip-pad finishing technique. Notably, with a mere 7 wt% weight gain of TPDT, the PLA nonwovens exhibit a substantial increase in the limited oxygen index (LOI) value, reaching 32.3 %. Furthermore, the damaged area in the vertical burning test is reduced by approximately 69.2 %. In the cone calorimeter test, 17 wt% weight gain of TPDT results in a 51.4 % decrease in peak heat release rate and a 56.0 % reduction in total heat release compared to the control PLA. Additionally, char residue increases from 1.5 wt% to 31.1 wt% after combustion. The strong affinity between TPDT and PLA molecules persists even after repeated abrasion, ensuring sustained flame retardancy. Importantly, the introduction of TPDT also imparts increased softness to the PLA nonwovens. This work addresses this concern by synthesizing a hyperbranched polyphosphoramide flame retardant (TPDT) through a solvent-free, catalyst-free, and one-step polycondensation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call