Abstract

The performance of MOFs in catalysis is largely derived from structural features, and much work has focused on introducing structural changes such as defects or ligand functionalisation to boost the reactivity of the MOF. However, the effects of different parameters chosen for the synthesis on the catalytic reactivity of the resulting MOF remains poorly understood. Here, we evaluate the role of metal precursor on the reactivity of Zr-based MOF-808 towards hydrolysis of the peptide bond in the glycylglycine model substrate. In addition, the effect of synthesis temperature and duration has been investigated. Surprisingly, the metal precursor was found to have a large influence on the reactivity of the MOF, surpassing the effect of particle size or number of defects. Additionally, we show that by careful selection of the Zr-salt precursor and temperature used in MOF syntheses, equally active MOF catalysts could be obtained after a 20 minute synthesis compared to 24 h synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.