Abstract

The disparity between human and machine perception of spatial information presents a challenge for machines to accurately sense their surroundings and improve target detection performance. Cross-modal data fusion emerges as a potential solution to enhance the perceptual capabilities of systems. This article introduces a novel spatial perception method that integrates dual-modality feature fusion and coupled attention mechanisms to validate the improvement in detection performance through cross-modal information fusion. The proposed approach incorporates cross-modal feature extraction through a multi-scale feature extraction structure employing a dual-flow architecture. Additionally, a transformer is integrated for feature fusion, while the information perception of the detection system is optimized through the utilization of a linear combination of loss functions. Experimental results demonstrate the superiority of our algorithm over single-modality target detection using visible images, exhibiting an average accuracy improvement of 30.4%. Furthermore, our algorithm outperforms single-modality infrared image detection by 3.0% and comparative multimodal target detection algorithms by 3.5%. These results validate the effectiveness of our proposed algorithm in fusing dual-band features, significantly enhancing target detection accuracy. The adaptability and robustness of our approach are showcased through these results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.