Abstract
The AA2024 aluminum alloy is difficult to manufacture by laser powder bed fusion (L-PBF) due to its crack sensitivity. This work introduces a novel crack-free graphene nano-platelets (GNPs) and ZrO2 nanoparticles hybrid-modified AA2024 alloy suitable for laser powder bed fusion (L-PBF). The columnar-to-equiaxed transformation caused by nanoparticles-inducing nucleation sites eliminates the cracks. A bimodal microstructure consists of coarse columnar grains and ultrafine equiaxed grains, which are formed in the as-built composites. Compared with the L-PBF prepared AA2024 alloy and 1 wt% ZrO2/AA2024 composite, the (0.2 wt% GNPs + 1 wt% ZrO2)/AA2024 composite exhibit the highest tensile strength of 382 MPa and elongation of 16 %. The introduction of GNPs and ZrO2 nanoparticles provide dual increment in both tensile strength and ductility compared with single ZrO2 nanoparticles modified AA2024. Following further T6 heat treatment, the tensile strength increased significantly to 624 MPa, but the elongation decreased dramatically to 5.6 %. In-depth analysis was provided of the strength and ductility improvements induced by GNPs/ZrO2 nanofiller in this investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.