Abstract
This study tackles limitations of Silk Fibroin (SF), including availability of sites for modification. This is achieved by Direct Plasma Nanosynthesis (DPNS), an Ar+ bombardment method, to generate and modify nanostructures and nanoscale properties on the SF surface. SF samples were treated with DPNS at incidence angles of 45o and 60o, with specific ion dose and energy parameters (1 × 1018 ions/cm2 and 500 eV, respectively) maintained throughout the process. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) primarily underscored transformations in SF's nitrogenous components. Specifically, treatment produced a boost in C-NH2, particularly pronounced in the 45o-treated samples, suggesting changes were more superficial than alterations to the secondary structure.The DPNS treatment gave rise to periodic nanocone structures on the SF surface, with a scale increase correlated to a higher angle of incidence. This resulted in a decrease in surface stiffness and significant changes in the motility of J774 macrophages interacting with the transformed SF. Furthermore, the SF samples treated at a 60o incidence showcased a confinement effect, moderating the macrophages' motility, morphology, and inflammatory response. The DPNS-induced alterations not only mitigate SF's limitations but also affect cellular behavior, expanding potential for SF in biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.