Abstract

An ideal forward osmosis (FO) membrane module for osmotic membrane bioreactor (OMBR) application would have high packing density, low reverse solute flux and low fouling propensity. Recently, an outer-selective hollow fiber forward osmosis (HFFO) membrane has been developed to simultaneously improve packing density and reduce fouling propensity. However, a high reverse solute flux of the HFFO membrane still generates a salinity build-up in the reactor and remains the main challenge of this technology. To tackle this problem, we successfully improved the selectivity of an outer-selective HFFO membrane by incorporating a prior developed formulation based on Pluronic® nanostructures containing water selective proteins into the active layer of the membrane. The assimilation of these nanostructures in the membrane resulted in a significant decrease of the specific reverse solute flux from 0.36 ± 0.01 gL-1 to 0.12 ± 0.02 gL-1 with no significant decrease in water flux. Also, urea was selected as a challenging solute to investigate the selectivity of the developed membranes. In comparison with the pristine membranes, membranes containing nanostructures presented a superior rejection of urea from 87.7 ± 2.0 % to 95.2 ± 0.9 %. The developed membranes are able to be used for future OMBR application tests to prove feasibility of the process. Thus, this study can lead to the development of new membranes suitable for efficient and long-term operation in OMBR configurations. Additionally, the nanostructures investigated here can be used for different thin-film composite membranes as an additive to improve membrane selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.